Training workshop of GHG inventory – AFOLU sector

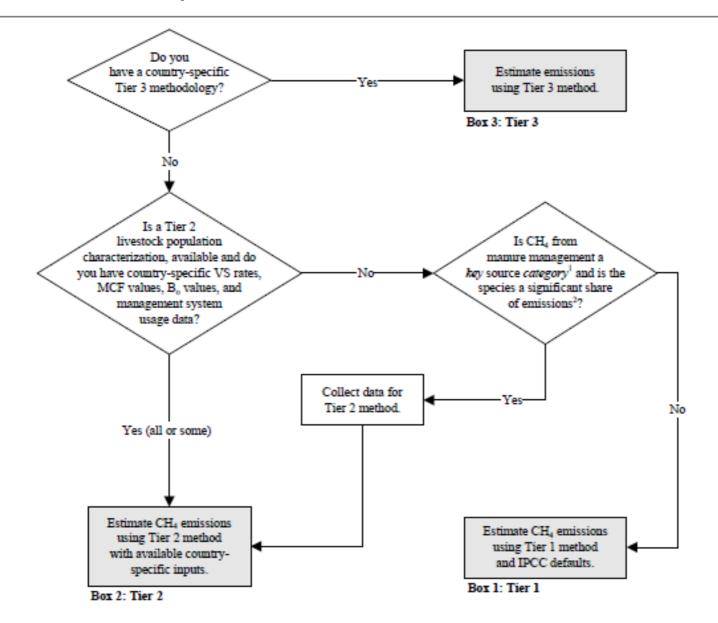
Livestock: 3A2 Manure Management, including 3C6 indirect N₂O from Manure Management

June 2016 Chisinau, Republic of Moldova

Atsushi Sato

Outline

- Background
- CH₄ emissions from manure management
 - Tier.1 Methodology for CH₄
 - Tier.2 Methodology for CH₄
 - Exercise of using the IPCC Software
- N₂O emissions from manure management
 - Methodologies for N₂O
 - Exercise of using the IPCC Software: direct N₂O emissions
 - Exercise of using the IPCC Software: indirect N₂O emissions


Background

- When manure is stored or treated as a liquid (e.g., in lagoons, ponds, tanks, or pits), it decomposes anaerobically and produce CH₄.
- The main factors affecting CH₄ emissions are the amount of manure produced and the portion of the manure that decomposes anaerobically.
- Direct N₂O emissions occur by nitrification and denitrification of nitrogen contained in the manure. The emission of N₂O from manure during storage and treatment depends on the nitrogen and carbon content of manure, and on the duration of the storage and type of treatment.

Choice of estimation method for CH₄ emissions

- Identify livestock subcategories: The same data developed in 3A1 can be used.
- Examine whether Tier.2 level estimation is possible or not. Availability of the following CS parameters is the threshold.
 - VS-ratio, MCF value, B₀ values, management system usage data.
- From the decision tree:
 - if the source occurs but not key source
 basic characterization tier 1 default EF
 - if the source occurs and key source:
 - for the significant species (normally cattle, sheep, swine) (cattle and sheep in RM 2015 inv.):
 enhanced characterization tier 2 CS EFs
 - for the non-significant species (normally, goats, camels, horses, asses, mules, poultry):
 basic characterization tier 1 default EF
- If relevant country specific science is available, application of Tier.3 may also be considered.

Decision tree: CH₄ emissions from Manure Management

Tier.1 methodology for CH₄ Manure Management

Equation

Simply multiplying "animal population" and "EF (annual CH4 emission per head)

Total CH_{4 Manure} =
$$\Sigma$$
 [EF_(T) * N_(T)/10⁶]

 $EF_{(T)}$ = emission factor for the defined livestock population, kg CH_4 head-1 yr-1

 $N_{(T)}$ = the number of head of livestock species / Category T

How to identify appropriate default EF

- Default EFs for Tier.1 are provided <u>by livestock species</u> and by <u>average annual temperature</u>.
- Refer the appropriate livestock category and the average annual temperature in RM.
- Table 10.14 :for cattle, swine (and buffalo) for each region and each temperature(Not necessary for RM).
- Table 10.15 :for sheep, goats, horses, mules/asses and poultry for developed /developing countries and for three climate zone.
- Table 10.16: for deer, reindeer, and rabbit. No distinction between regions/temperature.

Tier.2 methodology for CH₄ Manure Management

- Basic Equation and activity data
 - The equation for Tier.2 is also multiplying "animal population" and "EF (annual CH₄ emission per head).
 - Activity data of animal population should be sub-divided into manure management type. The portion of manure management for each animal specie is necessary.

■ EF for Tier.2

- Considering the three factors to establish the EFs under Tier.2.
 - Daily volatile solid (VS) excreted rate (calculated from "gross energy intake", "digestibility of the feed, and ash content of the manure).
 - ◆ Maximum amount of methane able to be produced from that manure (B₀).
 - Methane conversion factor (MCF) for each system by climate region.

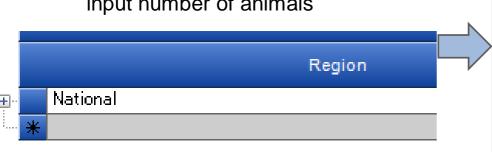
 $EF_{(T)} = (VS*365)*[Bo_{(T)} * 0.67 \text{ kg/m}^3 *\Sigma (MCF_{(S,k)}/100 *MS_{(T,S,k)})]$ (equation 10.23)

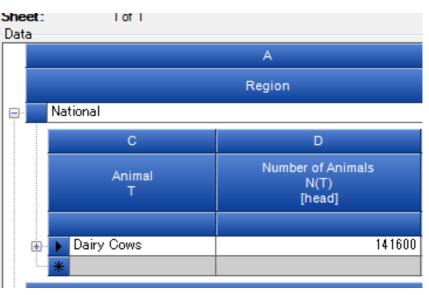
MS: fraction of livestock category T for manure management system S in climate region k.

0.67: conversion factor from m³ CH to kg CH₄

Tier.2 methodology for CH₄ Manure Management

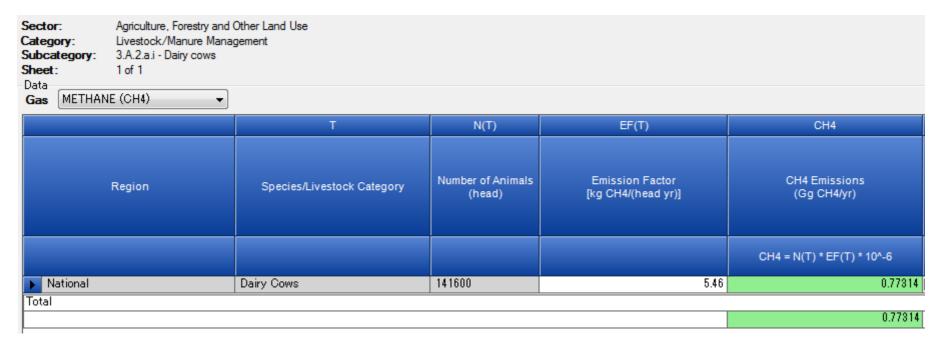
- Fraction of manure management system (necessary to Tier.2)
 - Ideally CS data is used
 - Otherwise, regional data presented in Table 10A-4 (for Daily Cows), 10A-5 (for Other Cattle), 10A-7(Market Swine), 10A-8(Bleeding Swine) can be used.

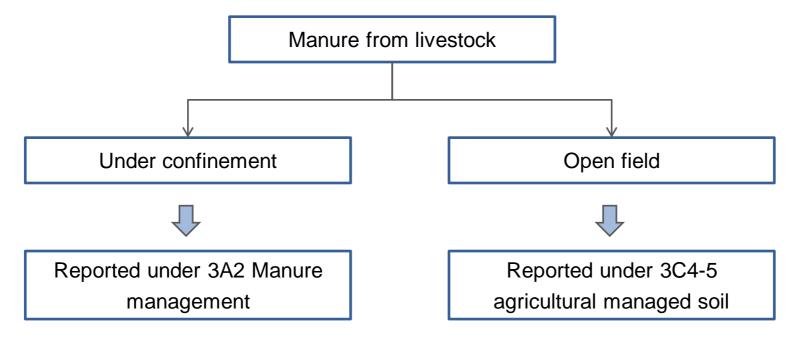

Exercise by using the IPCC Software, 3A2-CH4


- Tiers to apply to CH₄: The following is the tiers in the 2015 inventory of Moldova.
 - Tier.2: Dairy Cows, Other Cattle, Swine (Market Swine, Fattening Piglets)
 - Tier.1:Sheep, Goats, Horses, Assess/Mules, Poulty, Rabbit
 - NO: Buffalo, Camels
- For 3A2 Manure Management, three tabs exist in the worksheet

 Firstly, all necessary data should be filled in "Region, Livestock, MMS Association (manure management system)

 Then you can see [+] mark left to the Region column.


 Click [+] and then you can input number of animals


Exercise by using the IPCC Software, 3A2-CH4

- You move to the CH₄ tab. The entered number of animals is reflected into the CH₄ tab.
- At this moment, Tier.2 CH₄ EF is not able to estimate from source data through the software. (you have to estimate it by other tool such as excel.)
- In the CH₄ tab, you can select default EF which is automatically selected from EFs based on temperature information entered in advance, or enter Tier.2/CS EF to the relevant EF cell. Then the software calculates CH₄ emission.

Notification relating to N2O Manure Management

Special attention is necessary to the estimated category of N2O emission from manure

Choice of estimation method for N₂O emissions

- Identify livestock characterization and collect its population: The same data developed in 3A1 can be used, but single livestock characterization is necessary to be determined by;
 - annual average nitrogen excretion rate per head (Nex) for each animal species/category (T)
 - fraction of the total annual excretion for each livestock species/category that is managed with each manure management system type (MS)
 - N₂O emission factors (EF₃) for each manure management system type
- There are two type of N_2O emission: direct N_2O emission/indirect N_2O emission:
 - Basically the same activity data are applicable to both.
 - For indirect N2O emission, Tier.1 covers volatilization of N (fraction of emitted as gas, and EF4 used), Tier.2 covers volatilization as well as leaching run off (fraction of runoff loss and EF5 used).
 - Volatilization is almost unavoidable process, while leaching is able to be prevented by anthropogenic management practice.

Choice of estimation method for N₂O emissions

- Activity data required in addition to those necessary for the livestock characterization – are:
 - annual average N excretion per head/category/species
 - fraction of total annual excretion for each livestock species/category that is managed in a manure management system
- If no available data on the distribution of manure management systems, the Party should conduct a survey
- If not possible, values can be derived from expert opinions
- Parties are also encouraged to disaggregate the activity data for each major climatic zone

Methodology for direct N₂O emissions

■ The same equation is applied to both Tier.1 and Tier.2.

EQUATION 10.25 DIRECT N₂O EMISSIONS FROM MANURE MANAGEMENT

$$N_2O_{D(mm)} = \left[\sum_{S} \left[\sum_{T} \left(N_{(T)} \bullet Nex_{(T)} \bullet MS_{(T,S)}\right)\right] \bullet EF_{3(S)}\right] \bullet \frac{44}{28}$$

Where:

N2OD(mm) = direct N2O emissions from Manure Management in the country, kg N2O yr-1

 $N_{(T)}$ = number of head of livestock species/category T in the country

 $Nex_{(T)}$ = annual average N excretion per head of species/category T in the country, kg N animal⁻¹ yr⁻¹

 $MS_{(T,S)}$ = fraction of total annual nitrogen excretion for each livestock species/category T that is managed in manure management system S in the country, dimensionless

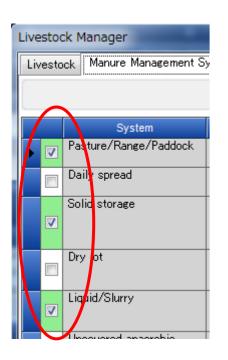
 $EF_{3(S)}$ = emission factor for direct N_2O emissions from manure management system S in the country, kg N_2O -N/kg N in manure management system S

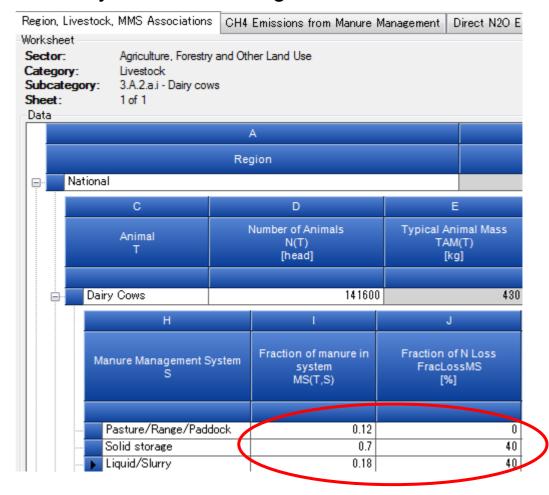
S = manure management system

T = species/category of livestock

44/28 = conversion of $(N_2O-N)_{(mm)}$ emissions to $N_2O_{(mm)}$ emissions

Tier.1 and Tier.2 for direct N₂O emissions


- The difference between Tier.1 and Tier.2 is mainly based the way estimating annual average N excretion per head of animal of species/category T (Nex_(T)).
- At this moment, Tier.1 type of Nex_(T) calculation using "typical animal mass (TAM)" and "N excretion rate" is able to be done by the IPCC software. It allows to use both default parameter and/or country specific information. (So the same estimation applied by RM in the 2015 submission is reproductive).
- However, full Tier.2 type Nex_(T) calculation is neither covered by nor entered into the software...


Exercise of using the IPCC Software for 3A2 N2O

At first you should select the existing MMS in the livestock manager.

Then enter the fraction of manure system in the "Region, Livestock, MMS

Associations" tab.

Exercise for 3A2 N2O

- Tier.1 calculation of $Nex_{(T)}$ can be done by livestock Manager tool, and this will automatically be reflected into the N₂O tab.
- Select or enter appropriate EF3 and then the software calculates direct N₂O emissions

1 of 1 - Direct N2O Emissions from Manure Management Systems

N(T)

Number

of

Animals

(head)

141600

Nrate(T)

Default N

excretion rate

(kg N (1000

kg Animal)^-1

Day^-1)

0.35

Agriculture, Forestry and Other Land Use Livestock/Manure Management

Species/Livestoc

k Category

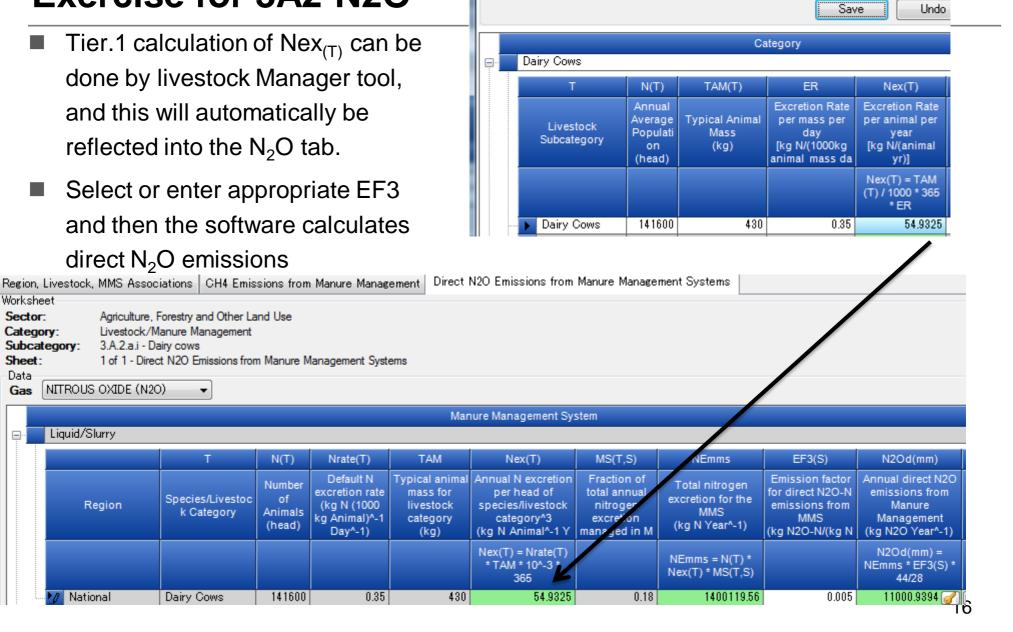
Dairy Cows

3.A.2.a.i - Dairy cows

NITROUS OXIDE (N2O)

Region

National


Liquid/Slurry

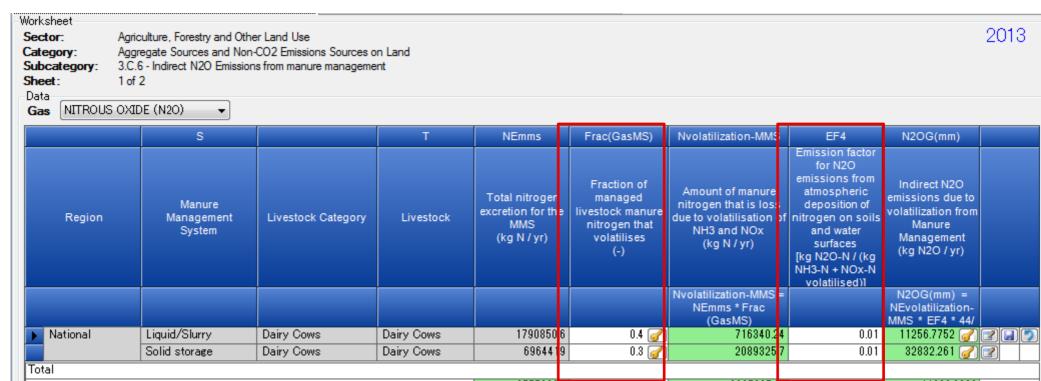
Worksheet Sector:

Category: Subcategory:

Sheet: Data

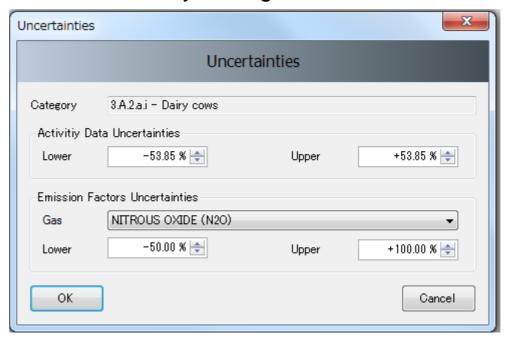
Gas

Region


Livestock Manager

Manure Management System

Livestock


Exercise for 3C6

- For the estimation of indirect N₂O emissions from manure management, the calculated amount of N excreted in 3A2 is automatically reflected in 3C6 sheet 1 of 2.
- You just select the default parameters or enter CS ones about 1) percentage of volatilization of manure management, and 2)EF4.
- As reaching runoff is Tier.2, the IPCC software does not include this estimation worksheet. If a party wants to include this, using "3C8 other" is the only way to do.

Uncertainty assessment

- The 2006GL provides the relevant information of uncertainties in section 10.5.5
 - Animal population: "vary widely depending on source, but should be known within ±20%.
 - Nitrogen Excretion rate: ±50 %
 - EF3: -50 to +100%
- So the AD uncertainty is calculated by $sqrt(20\%^2 + 50\%^2) = 53.85\%$
- This values are able to entered into the Uncertainty manager

