

Energy Sector

Technical Support Unit, IPCC TFI

Energy Sector

Annex 1 – Emissions

National Emissions

Emissions as % of total

Annex 1 – Energy Emissions (2008)

Sectoral Overview (2000)_ SA

Reference Energy System [RES]

Combustion Emissions

- CO₂ emissions depend:
 - Almost entirely on the carbon content of the fuel
 - A small amount of carbon is un-oxidised (usually >1%)
- CH₄ and N₂O Emissions depend on
 - Type of fuel
 - Combustion technology
 - Operating conditions
 - Control technology
 - Quality of maintenance
 - Age of equipment

Fuels

- SOLID (Coal and Coal Products)
 - ❖ Inc. coal, coke and derived gases.
- LIQUID (Crude Oil and Petroleum Products)
 - Fuel Oil, Gasoline, LPG, Ethane and Petroleum Coke
- GAS (Natural Gas)
- **OTHER FOSSIL FUELS**
 - Non-biomass municipal & Industrial wastes, waste oils
- PEAT (treated as fossil fuel)
- ***BIOMASS**
 - Wood, Charcoal, Biofuels, Biomass fraction of MSW
 - ❖CO₂ Emissions not included in total Energy Emissions

Biomass

- CO₂ emissions from biomass combustion are not included in the national total
 - Although they are reported separately
 - Non-CO₂ emissions are reported in the national total
- Net carbon emissions are accounted for in the LULUCF/AFOLU sector
- Peat is treated as a fossil fuel

Combustion Emissions – Tier 1

E=F•A

Where:

E = Emission of Greenhouse Gas

A = Amount of fuel burnt

F = Emission Factor.

For CO_2 , F = C, the Carbon content of fuel

For other gases F is measured

Coal Use – Africa – IEA data 2006									
(Original Units) Data: IEA 2009 (http://www.iea.org/Textbase/stats/index.asp)									
,	Coking Coal	Other Bituminous Coal	Peat	Patent Fuel	Coke Oven gas	Gas Coke	Gas Works Gas	Coke Oven Gas	Blast Furnace Gas
Unit			kT					TJ	
Electricity Plants		124764							

4

9.76

104

20.7

28.2

28.2

Energy Sector

Industry

Transport

Residential

Fishing

Commercial and

Agriculture / Forestry

Other Non-Specified

Non-Energy Use

cv (TJ/Gg)

Public Services

14

28.2

12,921

8

4,942

2,589

265

397

2,220

25.8

18

841

55

380

326

86,586 16,763 32,341

Energy Units

- Energy statistics are often specified in physical units, e.g. in tonnes or m³
- To convert these data to energy units, eg joules, requires calorific values.
- The IPCC Guidelines use net calorific values (NCVs), expressed in SI units.
- Some statistical offices use gross calorific values (GCV).
 - The difference between NCV and GCV is the latent heat of vaporisation of the water produced during combustion of the fuel.
 - for coal and oil, the NCV is about 5 % less than the GCV
 - For most natural and manufactured gas, the NCV is about 10 % less.
- Where fuel characteristics (moisture, hydrogen and oxygen contents) are known the 2006 Guidelines give a more precise method to convert GCV to NCV data

Specific Net Calorific Values

Crude Oil*

Petroleum Products*

Coal*

-		13.0		-		-
	toe/tonne			toe/tonne		toe/tonne
Saudi Arabia	1.016		Refinery gas	1.150	China	0.531
United States	1.029		LPG	1.130	United States	0.634
Russia	1.005		Ethane	1.130	India	0.441
Iran	1.019		Naphtha	1.075	Australia	0.614
Mexico	1.054		Motor Gasoline	1.070	South Africa	0.564
China	1.000		Jet Fuel	1.065	Russia	0.545
Venezuela	1.069		Kerosene	1.045	Indonesia	0.615
Canada	1.022		Gas/Diesel Oil	1.035	Poland	0.551
Norway	1.022		Heavy Fuel Oil	0.960	Kazakhstan	0.444
Kuwait	1.016		Other Products	0.960	Ukraine	0.505
D D	19	2.5			10	

^{*} for selected countries.

^{*} selected products - average values.

^{*} steam coal production for selected countries.

Coal Use – Africa – IEA data

Coke

Oven Gas

TJ

23,716 1,551 86,586 16,763 32,341

380

326

44,400

44,400

260,000

Blast

Furnace Gas

	2006 (Energy)										
7		Coking Coal	Other Bituminous Coal	Peat	Patent Fuel	Coke Oven gas	Gas Coke	Gas Work Gas			
Unit				TJ							
	Electricity Plants	-	3,218,911	-	-	-	-	-			
	Energy Sector	_	_	_	_	508	_	_			

333,362

206

127,504

66,796

6,837

10,243

57,276

94,600

94,600

39

2,153

106,000 97,500

107,000 107,000

Industry

Transport

Residential

Fishing

Commercial and Public Services

Agriculture / Forestry

Other Non-Specified

Emission Factors kg/TJ

Non-Energy Use

395

Coal U	se -	- Afr	ica	-1	EA	da	ta 2	006	5
	Coking Coal	Other Bituminous Coal	Peat	Patent Fuel	Coke Oven gas	Gas Coke	Gas Works Gas	Coke Oven Gas	Blast Furnace Gas
Unit				Gg	(ktonne)			
Electricity Plants	_	304,509	-	_	_	_	_	-	-
Energy Sector	_	-	_	_	54	-	_	-	_
Industry	37	31,536	-	-	2,538	166	3,844	744	8,409

210

210

2,592

166

17

14

3,876

8,409

744

20

12,062

6,319

647

969

5,418

356,061

Transport

Residential

Fishing

Commercial and Public Services

Agriculture / Forestry

Other Non-Specified

Non-Energy Use

Total Emissions

African CO₂ Emissions -2006

African CO₂ Emissions -2006

Combustion Emissions – Higher Tiers

- Country Specific emission factors carbon contents are needed
- \bullet For CO₂, F = C•O
 - C = Carbon content of fuel; O = oxidation factor (fraction of fuel C oxidised to CO₂)
- Any abatement needs to be taken into account
- May need to stratify fuel use by abatement type and oxidation rate (technology)
- Non-CO₂ emissions technology dependent
- Measurements are a Tier 3 approach can be combined with emission factor tier 1/2 approaches if sufficient data available [Sometimes this includes use of Models]

Reference Approach

- A simple basic method based on imports, production and exports.
- Essentially:

Emission = Production + Imports - Exports - NonEnergyUse

- CO₂ only!
- Used as a check on the sectoral approach described above
 - Differences due to non-energy use of fuel, as well as differing quality data sets

African Energy Use – Energy Balance

ktonne oil equivalent (ktoe)

SUPPLY and CONSUMPTION	Coal and Peat	Crude Oil	Petroleum Products	Gas
Production	141,801	495,846	0	169,668
Imports	7,698	42,879	45,214	4,030
Exports	-46,879	-401,357	-43,524	-96,473
International Marine Bunkers**	0	0	-6,035	0
Stock Changes	-39	-336	-1,113	0

African Energy Emissions

SUPPLY and CONSUMPTION	Coal and Peat	Crude Oil	Petroleum Products	Gas
Production	5,936,924	20,760,080	0	7,103,660
Imports	322,300	1,795,258	1,893,020	168,728
Exports International	-1,962,730	-16,804,015	-1,822,263	-4,039,132
Marine Bunkers**	0	0	-252,673	0
Stock Changes	-1,633	-14,068	-46,599	0

Total Emission = 978,092 Gg

Data: IEA 2009 (http://www.iea.org/Textbase/stats/index.asp)

African CO₂ Emissions – Sectoral and Reference Emission Estimates

Road Transport

- CO₂ Emissions from C in fuel used
 - Bio-fuels carbon removed form total and reported separately
 - Carbon is also emitted from urea based catalysts and included here (not strictly combustion?)

$$Emission = Activity \bullet \frac{12}{60} \bullet Purity \bullet \frac{44}{12}$$

- CH₄ and N₂O strongly technology related. At higher tiers need to know technologies in fleet (especially type and proportion of catalysts)
- Caution with "fuel sold" data
 - overlaps with off-road and potentially other sectors (e.g. agriculture)
 - Blended fuels (e.g. with bio-ethanol and lubricants)
 - Smuggling
- All fuel sold in country included even if fuel exported in fuel tanks of vehicles and used elsewhere

Aviation and Shipping

- Aviation and Shipping
 - Domestic Emissions included in National Total
 - International Emissions Reported separately "Bunker Fuels"
 - Domestic are legs of journeys between points in one country
 - International are trips between countries

Non-Energy Use of Fuels

Types of use and examples of fuels used for non-energy applications								
Use	Example of fuel types	Product/process	Ch					
Feedstock	natural gas, oils, coal	ammonia	3.2					
	naphtha, natural gas, ethane, propane, butane, gas oil, fuel oils	methanol, olefins (ethylene, propylene), carbon black	3.9					
Reductant	petroleum coke	carbides	3.6					
	coal, petroleum coke	titanium dioxide	3.7					
	metallurgical cokes, pulverised coal, natural gas	iron and steel (primary)	4.2					
	metallurgical cokes	ferroalloys	4.3					
	petroleum coke, pitch (anodes)	aluminium ¹	4.4					
	metallurgical coke, coal	lead	4.6					
	metallurgical coke, coal	zinc	4.7					
Non-energy	lubricants	lubricating properties	5.2					
Product	paraffin waxes	misc. (e.g., candles, coating)	5.3					
	bitumen (asphalt)	road paving and roofing	5.4					
	white spirit ² , some aromatics	as solvent (paint, dry cleaning)	5.5					

^{1.} Also used in secondary steel production (in electric arc furnaces) (see Chapter 4.2).

² Also known as mineral turpentine, petroleum spirits, industrial spirit ('SBP').

Fugitive Emissions

Fugitive Emissions

- Covers a wide range of sources associated with the production and distribution of fossil fuels
- Significant CH₄ emissions from mines and leaks
- Simple Emission Factor methods at Tier 1
- Higher tiers need more detail on technologies and age of plant/mines etc.
- Includes:
 - Active and abandoned mines
 - Venting and flaring from oil & gas industry
 - Leakages from distribution (e.g., gas pipelines)

CO₂ Transport, Injection and Geological Storage

Fugitive Emissions - Sources

Emissions

- Estimate/measure emissions without capture.
- Measure amount captured
- Plant emission is the difference
- All leaks after measurement point are transport emissions
- Transport emissions are fugitive emission and use similar methods.

CO₂ – Leakage from storage site

Summary

- Energy Emissions are usually the most important
 - CO₂ from fuel combustion is major source
 - CH₄ mainly comes from fugitive emissions
- CO₂ emission factor depends on carbon content of fuel.
- Reference approach used for checking

Any Questions?

IPCC

Greenhouse Gas Inventory Hands-on Training Workshop

Energy Sector – Fugitive Emissions

Outline of course - Fugitive Emissions

Fugitives

- Introduction
- Coal mining and handling
- Oil and natural gas systems
- Data issues
- References

Introduction

- **Fugitives**: the sum of emissions from accidental discharges, equipment leaks, filling losses, flaring, pipeline leaks, storage losses, venting and all other direct emissions except those from fuel use
- Mainly methane (CH₄)
- Entrained CO₂ can be significant in some cases
- Minor N₂O emissions from flaring

Sources of Fugitives

- Solid fuels (primarily coal)
 - mining, handling, processing and storage
- Oil and natural gas systems
 - exploration, production, processing, refining, transmission, storage and distribution

Coal Mining and Handling

- Release of trapped methane during mining
- In-situ methane content of coal can vary widely
- Most fugitive emissions occur at the mine
- Some residual emissions occur from post-mining handling / processing activities

Figure 2.10 Decision Tree for Underground Coal Mining and Handling

Surface vs. Underground

- Two types of coal mines
- Higher emissions for underground mines
- Emissions increase with depth of mine
- Emissions also depend on gas content of coal
 - Some gas may remain in the coal
 - 60%–75% gas released during mining activity

Abandoned Mines

- Emissions may continue after the mines have stopped producing coal
- Typically, emissions decline rapidly once deep mine coal production stops
- In some cases, emissions by the surrounding strata may be significant and continue for years afterwards.
- Coal waste or reject piles are minor source of emissions
- Flooding of mines can prevent emissions

Controlling Emissions

- Degasification wells
 - Gas conservation
 - Flaring
- Use of catalytic combustors on the outlet of ventilation systems for underground mines

Monitoring and Activity Data

- Methane content of exhausted ventilation air (Tier 3)
- Coal production (Tier 1 or 2)
- Imports and exports by type of coal
 - Post-mining emission, likely to be minor
- Information on the depth of each mine (Tier 2)

Tier 1 and Tier 2

EQUATION 2.12

Emissions = Coal Production (Surface or Underground) • Emission Factor

EQUATION 2.13

Total Emissions = Underground Mining Emissions + Surface Mining Emissions + Post-Mining Emissions - Methane Recovered and Used or Flared

- Tier 1 global average emission factors
- Tier 2 country or basin-specific emission factors based on actual CH₄ content of coal mined

Coal Mining References

- Coal statistics are available for most countries from:
 - U.S. Energy Information Administration (EIA) http://www.eia.gov/
 - United Nations Statistics Department (UNSD)
 - < http://unstats.un.org/unsd/default.htm>
 - International Energy Agency (IEA) http://www.iea.org/

Oil and Natural Gas Systems

- Equipment leaks
- Process venting and flaring
- Evaporation losses (i.e. from product storage and handling, particularly where flashing losses occur)
- Accidental releases or equipment failures

Figure 2.13 Decision Tree for Crude Oil Production and Transport

Emission Rates Depend On...

- Characteristics of hydrocarbons being produced, processed or handled
 - Conventional crude oil
 - Heavy oil
 - Crude bitumen
 - Dry gas
 - Sour gas (more than 10 ppmy of hydrogen sulphide (H₂S))
 - Associated gas
- Equipment numbers, type and age
- Industry design, operating and maintenance practices
- Local regulatory requirements and enforcement

i.e..

methane content of fuel and leakiness of equipment

Emissions From Venting and Flaring Depend On...

- The amount of process activity
- Operating practices
- On-site utilization opportunities for methane
- Economic access to gas markets
- Local regulatory requirements and enforcement

Accidental Releases...

- Difficult to predict
- Can be a significant contributor
- Can include:
 - Well blowouts
 - Pipeline breaks
 - Tanker accidents
 - Tank explosions
 - Gas migration to the surface around the outside of wells
 - Surface casing vent blows
 - Leakage from abandoned wells

Equipment Leaks

- Tend to be continuous emitters
- Low to moderate emission rates
- All equipment leaks to some extent
- Only a few per cent of the potential sources at a site actually leak sufficiently at any time to be in need of repair or replacement.
- If less than 2% of the total potential sources leak, the facility is considered well-maintained

Fugitives Data

- Poor quality and incomplete data about venting and flaring is common
 - Contact industry representatives for standard practices to split venting and flaring
- Data about equipment leaks at minor facilities is unavailable or incomplete
 - Well-site facilities
 - Field facilities

Fugitives Data (cont.)

- Collection of activity data for fugitives sources is difficult and resource intensive...
- There are no real shortcuts available
- First step can be to interview experts in industry on common practices and processes...
- ...have them compare national practices with those of countries with a known emissions profile (e.g. an Annex I country).

Thank You

