

Key category Analysis

IPCC Task Force on National Greenhouse Gas Inventories

The Problem

- Many inventory sectors are small and have little impact on the final total or the trend
- Resources are limited
- Therefore want to focus effort on inventory categories that will have maximum impact in improving the estimates
- How to identify the significant sectors in a repeatable and consistent way?

Key Categories

- These are emission or removal categories that contribute most to the total or trend in emissions.
- Key Category Analysis (KCA) is the process to identify these sectors.
- "A **key category** is one that is prioritised within the national inventory system because its estimate has a significant influence on a country's total inventory of greenhouse gases in terms of the absolute level, the trend, or the uncertainty in emissions and removals. Whenever the term **key category** is used, it includes both source and sink categories."
- It is good practice to use a higher tier (at least Tier 2) for key categories.

Types of KCA Analysis

- Quantitative Analysis numerical values that describe the contribution of a category to the national total emissions and their trend (Level and Trend Assessments)
- Qualitative Analysis considers other criteria that are not easily assessed through a quantitative analysis

Steps

- 1. Prepare the list of categories based on the IPCC categories
 - Identify special considerations related to analysis (e.g. fossil fuel combustion is a large emission category that can be broken down to subcategories)
 - 2. Each greenhouse gas emitted from a single category should be considered separately
 - 3. Source categories that use the same EF based on common assumption should be aggregated before analysis
- 2. Perform quantitative analysis of the relationship between the level and the trend of each category emissions and total national emissions;
 - Use CO₂-equivalent emissions calculated using the global warming potentials (GWP);
- 3. Consider any qualitative considerations that would add additional key categories
- 4. Document the results and use in inventory compilation.

Approaches to Quantitative KCA

- Approach 1. Approach based on contribution to total and trend
 - Simple
 - Uses only data from emission estimate
- Approach 2. Based on contribution to overall uncertainty
 - More complex
 - Needs a complete uncertainty analysis to have been performed
- The two approaches can be used together when setting priorities

How to select approach to

use. Start Determine key categories Are using the Approach 1 Level country-specific and Trend Assessment, uncertainty estimates available Approach 2 Level and Trend for each category Assessment, and qualitative estimate? criteria. Box 1: Approach 1 and 2 Level and Trend Assessment Are Determine key categories inventory data using Approach 1 Level available for more than and Trend Assessment and one year? qualitative criteria. **Box 2: Approach 1 Level and Trend Assessment** Determine key categories Are using the Approach 1 inventory data available for one Level Assessment and year? qualitative criteria. Box 3: Approach 1 Level Assessment Determine key categories using

qualitative criteria.

Approach 1 – Level Assessment

$$Level = \frac{|category\ estimate|}{total\ contribution}$$

- "Contribution" is the sum of all the emissions and removals (expressed as positive numbers)
- Mathematically:

$$L_{x,t} = |E_{x,t}| / \sum_{y} |E_{y,t}|$$

Approach 1 – Level Assessment (2)

- The level is calculated for each category
- The largest ones that cumulatively add up to 95% of the total are selected
- These are the key categories.

			Emission/ Removal
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000
1A1	Fuel Combustion Activities - Energy Industries	Oil	200
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502
3A2	Manure Management	CH ₄	543
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345
3B1b	Land Converted to Forest Land	CO ₂	879

			Emission/ Removal	Absolute
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502
3A2	Manure Management	CH₄	543	543
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345
3B1b	Land Converted to Forest Land	CO ₂	879	879
				20892

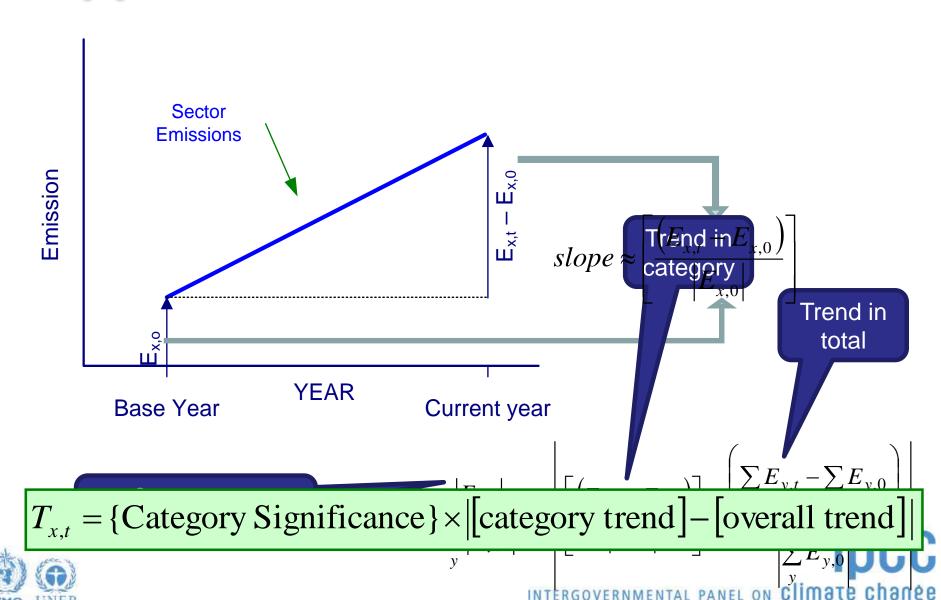
			Emission/ Removal	Absolute	Level
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000	47.9%
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200	1.0%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300	6.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123	0.6%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%
3A2	Manure Management	CH ₄	543	543	2.6%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%
3B1b	Land Converted to Forest Land	CO ₂	879	879	4.2%
	,	-		20892	

			Emission/ Removal	Absolute	Level
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000	47.9%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300	6.2%
3B1b	Land Converted to Forest Land	CO ₂	879	879	4.2%
3A2	Manure Management	CH ₄	543	543	2.6%
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200	1.0%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123	0.6%
				20892	

			Emission/ Removal	Absolute	Level	Cumulative
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000	47.9%	47.9%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%	74.2%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%	85.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300	6.2%	91.6%
3B1b	Land Converted to Forest Land	CO ₂	879	879	4.2%	95.9%
3A2	Manure Management	CH ₄	543	543	2.6%	98.5%
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200	1.0%	99.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123	0.6%	100.0%
				20892		

Approach 1 – Trend Assessment

$$T_{x,t} = \frac{\left|E_{x,0}\right|}{\sum\limits_{y}\left|E_{y,0}\right|} \bullet \left[\frac{\left(E_{x,t} - E_{x,0}\right)}{\left|E_{x,0}\right|}\right] - \frac{\left(\sum\limits_{y} E_{y,t} - \sum\limits_{y} E_{y,0}\right)}{\left|\sum\limits_{y} E_{y,0}\right|}$$


if zero in base year:
$$T_{x,t} = \left| E_{x,t} / \sum_{y} |E_{y,0}| \right|$$

 Looks complex but easily to calculate with a spreadsheet (see guidelines)

Approach 1 – Trend Assessment

Example Trend Assessment

Table 4.6
Example of Approach 1 Trend Assessment for the Finnish GHG inventory for 2003 (with key categories in bold)

A	В	С	D	E	F	G	Н
IPCC Category	IPCC Category	Greenhouse	$\mathbf{E}_{\mathrm{x,0}}$	$\mathbf{E}_{\mathrm{x,t}}$	Trend Assessment	% Contribu-	Cumulative Total of
Code		Gas	(Gg CO ₂ eq)	(Gg CO ₂ eq)	$T_{x,t}$	tion to Trend	Column G
3B1a	Forest Land remaining Forest Land	CO ₂	-23 798	-21 354	0.078	0.147	0.147
1A1	Energy Industries: Solid	CO ₂	9 279	17 311	0.042	0.079	0.227
1A3b	Road Transportation	CO ₂	10 800	11 447	0.040	0.076	0.302
1A4	Other Sectors: Liquid	CO ₂	6 714	5 651	0.040	0.075	0.378
1A2	Manufacturing Industries and Construction: Solid	CO ₂	6 410	5 416	0.038	0.072	0.450
3B3a	Grassland Remaining Grassland	CO ₂	-1 071	2 974	0.037	0.069	0.519
1A1	Energy Industries: Peat	CO ₂	3 972	9 047	0.035	0.066	0.585
1A1	Energy Industries: Gas	CO ₂	2 659	6 580	0.029	0.054	0.639
4A	Solid Waste Disposal	CH ₄	3 678	2 497	0.028	0.053	0.692
3C4	Direct N ₂ O Emissions from managed soils	N ₂ O	3 513	2 619	0.024	0.046	0.738
1A2	Manufacturing Industries and Construction: Liquid	CO ₂	4 861	4 736	0.022	0.042	0.780
№ 3B2a	Cropland Remaining Cropland	CO ₂	1 277	211	0.017	0.031	0.811

Approach 2: Level Assessment

$$LU_{x,t} = \left(L_{x,t} \bullet U_{x,t}\right) / \sum \left[\left(L_{y,t} \bullet U_{y,t}\right)\right]$$

- Where L is the level assessment and U the uncertainty for category x in year t
- Similar method to approach 1 but select those that contribute 90% cumulatively not 95%

Approach 2 – Trend Assessment

$$LU_{x,t} = \left(T_{x,t} \bullet U_{x,t}\right)$$

- Where T is the trend assessment and U the uncertainty for category x in year t
- Similar method to approach 1 but select those that contribute 90% cumulatively not 95%

Some qualitative criteria

- Mitigation techniques and technologies
- Expected growth
- No quantitative assessment of uncertainty performed (e.g. high uncertainty, large stocks)
- Completeness (incomplete inventory gives incorrect KC results); refer to Vol.1 Chapter 2 for the Approaches to Data Collection.

Example Reporting

Summary of key category analysis for Finland						
IPCC Categor y Code	IPCC Category	Greenhouse gas	Criteria	Comments		
1A	Fuel Combustion Activities: Liquid	CO ₂	I 2	Aggregated		
1A	Fuel Combustion Activities: Solid	CO_2		Aggregated		
1A	Fuel Combustion Activities: Peat	CO_2		Aggregated		
1A1	Energy Industries: Solid	CO ₂				
1A1	Energy Industries: Peat	CO ₂				
1A1	Energy Industries: Gas	C				
1A1	Energy Industries: Liquid					
1A2	Manufacturing Industries and Construction: Solid					
1A2	L = key category according to lever					
1A2	T = key category according to tren			Τ2		
1A2	Q = key category according to qua	alitative crit	eria.			
1A3b	Road Transportation	CO_2	L1, T1			
1A3b	Road Transportation: Cars with Catalytic Converters	N ₂ O	L2, T2	Aggregated		
1A3c	Railways	CO_2	Q	Subjective Trend		

Summary

- KCA identifies those source and sink categories that have most influence on the emissons total and/or trend
- Improvements to these categories will most improve an inventory
- Compilers should focus resources on Key categories
- It is good practice to use at least a Tier 2 method for key categories
- Two approaches are provided compilers should use the one that fits their needs

Thank you!! Any Questions?

