

System optimization approach: capturing and sustaining energy savings and cost reduction in industry

Liam McLaughlin, MBA, CEM

Senior Energy Consultant, Eirdata Energy Researcher, UCC UNIDO Industrial Energy Efficiency Expert

Outline of Presentation

www.unido.org

- The importance of energy efficiency
- What is systems optimization?
- Component vs system approach to energy efficiency
- Why in industry a system approach matters
- Why systems optimization opportunities exist
- Examples of system optimization measures
- Conclusions

Importance of Industrial Energy Efficiency

- Represents more than *one-third* of global primary energy¹
- Direct industrial energy and process C02 emissions represent about 25% of total worldwide emissions - 6.7 Gigatonnes²
- Application of best available technologies worldwide would result in a19-32% reduction in current industrial CO2 emissions²
 - Includes improvements to steam and motor systems, which offer efficiency improvements of 15-30%

- Additional potential could be realized from 1 Price, of a 2008 wable & alternative energy sources including 2 IEA 2008 OF by mendology mendology easter a construction of the field of the to 2050 (excludes petroleum refining)

Global CO₂ Emissions by Industrial Sector

www.unido.org UNITED NATIONS

Industrial Energy Use in Emerging Economies

- Characteristics of Developing and Emerging Economies:
 - Industrial energy use can be up to 50% of the total and can produce supply problems
 - Lead global growth in both industrial energy use and carbon-related emissions
 - Emerging industrial infrastructure requires many new facilities, rapidly built and expanded
 - Includes substantial growth in energy intensive sectors
- Better build in energy efficiency the first time rather than retrofit it later
- New and expanding plants represent a very **Significant opportunity**. Poverty Reduction through Productive Activities • Trade Capacity Building • Energy and Environment

Why optimize energy systems

- Identify and implement improvement opportunities
- Economic savings
- Energy savings
- Environmental savings
- Productivity, reliability and quality improvements
- Security of supply
- Reduce exposure to rising energy prices
- Baseline / Benchmark system operation

What is system optimization?

- Involves looking at the full system rather than individual components
- System examples:
 - Steam
 - Compressed air
 - Lighting
 - Pumping
 - Refrigeration, etc
 - Motors very possibly not a system but a component!
- Example: fix air leaks before purchasing a more efficient compressor

Component v system approach

- Component approach involves segregating components and analyzing in isolation
 - Can result from education by particular technology sales engineer, e.g. variable speed drive, steam trap, etc
- System approach involves looking at how the whole group functions together and how changing one can help or impact another
 - Requires more knowledge of the system and its interactions
- The energy savings opportunities from systems are far greater than from individual components

> 2-5 Priverter Edicioa time in cryacity and times of Davie Cabrind En Wind u a draw a components

Why a system approach matters

- If approached randomly a boiler can often be optimized or tuned at, say, 70% of its output and then use is reduced and boiler is no longer efficient.
- Industrial operations are more variable than commercial or residential
 - Production schedules change

use worldwide

- Utilities need to follow production but remain optimized.
- Exception of heating/cooling systems in commercial operations
- Steam and motor-driven systems account for more than 50% of final manufacturing energy

www.unido.org UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

Pump system example

Motor – Pump – Throttled Valve System

Motor

15 kW Electric Motor

Courtesy of Don Casada, Diagnostic Solutions, LLC

Poverty Reduction through Productive Activities • Trade Capacity Building • Energy and Environment

Pump system example

www.unido.org

Motor – Pump – Throttled Valve System

Motor and Pump

Pump head: 36 m Flow rate: 97.6 m³/h Hydraulic power delivered = 9.6 kW

Pump + Motor Efficiency 59%

Courtesy of Don Casada, Diagnostic Solutions, LLC

Poverty Reduction through Productive Activities • Trade Capacity Building • Energy and Environment

UNITED NATIONS

Pump system example

Motor – Pump – Throttled Valve System

Motor and Pump and System

28 m pressure drop across the throttled valve Useful hydraulic power = 2.1 kW

Actual System Efficiency = 13%

Replacing the existing motor with a more efficient one would accomplish very little

Courtesy of Don Casada, Diagnostic Solutions, LLC

Other pump system example

- L. Minimise user
 requirements
- 2. Shut bypasses
- 3. Determine actual
 usage
- 4. Reselect pump and motor
- 5. Replace 150m3/h with 25m3/h
- 6. Save 75% or 176 MWh p.a.

Why do system optimization opportunities exist?

- Most energy systems (steam, motor-driven, etc.) are initially designed with:
 - > The assumption that "more" is better, where supply is concerned
 - Little or no thought given to system efficiency
 - > No plan for increases or decreases in system demand
 - A "lowest first cost" goal
- Changes to existing systems face the same issues
- Improper operation
- Poor maintenance
- System requirements change over time

Typical System Optimization Process

- l. What does the user need?
 - Consider variations, e.g. seasonal, occupancy, production schedules, etc.
- 2. Optimize use of the service
- 3. Optimise distribution of the service
- 4. Finally optimise generation of the service
 - Include how it is operated and maintained at each step

Steam system example

A boiler may have an operating efficiency of 85%, but if steam is being vented due to system balance issues then the overall system efficiency will be much lower

Poverty Reduction through Productive Activities • Trade Capacity Building • Energy and Environment

www.unido.org DUSTRIAL DEVELOPMENT

Steam system example

- 1. Is steam required at all?
 - Temperature, pressure, flowrate
 - Why use steam to heat air to 20°C?
 - Is waste heat available?
- 2. Reduce usage

UNITED NATIONS

- Leaks, set points, switch off, isolate, heat recovery, PINCH analysis, etc.
- 3. Optimise distribution
 - Leaks, insulation, condensate recovery, flash steam, isolate unused sections, etc.
- 4. Optimise Generation
 - Boiler sequencing, control, blowdown, insulation, economizer, oxygen trim, etc.

18

Energy Efficient Design (EED)

- Confirm <u>real</u> user requirements first
 - Pressure, temperature, flow, humidity, air changes, etc.
 - Integrate with other systems, e.g. use waste heat for space heating
- Design in user optimization features
- Design distribution system to minimise losses
- Design and size generation equipment last
 - It is often purchased first due to longer lead times
 - Include best available technology (BAT) and control
- EED will often reduce capital cost

Refrigeration system – R22 replacement

- Opportunity to review system
- Current load is ~ LMW cooling (COP 2.1 @ -25°C)
- Review users
 - Temperature (-25°C to -15°C)
 - Flow reduced by 50%
 - Thermal leakage
- Generation
 - Smaller VSD compressor
 - Sub-cooling
 - Desuperheater
 - Oil cooler heat recovery
 - Improved control
 - Existing condenser and evaporator are now oversized reduced temperature lift
- New COP = 2.4 >=> Savings ~ 15%

Engine Maintenance facility

- Brief was to specify new air compressor (75kW)
- System reviewed initially

use)

- Detected and repaired leaks (25% reduction)
- Moved some users away from compressed air (20%)
- Split system into high and low pressures
- Eliminated pressure drop at filters
- Replaced dryers with heated type (17% air

Dairy industry

- PINCH analysis of heat/cool system
 - Thermocompression
 - Heat/cool recovery
- Boiler sequencing
 - Methane from waste treatment
 - CHP
 - Natural gas
- Cooling tower sequencing

www.unido.org NDUSTRIAL DEVELOPMENT ORGANIZATION

Pharmaceutical plant - refrigeration

- 3 to 4 compressors of 4 running (250kW) each)
- Needed to add capacity as no back up available
- System Review

UNITED NATIONS

- Analysed use -very good data available
- Rebalanced user building
- Reset VSD controls on distribution pumps
- Reset compressor sequencing
- Result: one compressor only on part load
- Savings: greater than 65% (>4 GWh p.a.)

Poverty Reduction through Productive Activities • Trade Capacity Building • Energy and Environment

Results – UNIDO in China

System / facility	Total Cost [\$US]	Energy savings [kWh/year]	Payback Period
Compressed air/forge plant	18,600	150,000	1.5 years
Compressed Air/machinery	32,400	310,800	1.3 years
Compressed air/tobacco	23,900	150,000	2.0 years
Pump system/ hospital	18,600	77,000	2.0 years
Pump system/ pharmaceuticals	150,000	1.05M	1.8 years
Motor systems/ petrochemicals	393,000	14.1M	0.5 years

Poverty Reduction through Productive Activities • Trade Capacity Building • Energy and Environment

UNITED NATIONS

- Evaluate work requirements and patterns
- Match system supply to these requirements
- Identify, correct and upgrade maintenance problems
- Eliminate or reconfigure inefficient energy uses and practices (throttling, open blowing, etc)
- Replace or supplement existing equipment (boilers, motors, pumps, compressors) to better match work requirements and increase operating efficiency
- Apply relevant control strategies and technologies such as variable speed drives that allow greater flexibility to match supply with demand if it is variable
- Verify savings through measurement and estimation

Conclusions

www.unido.org

- Use a Systems Approach to optimize industrial energy assets
- Measurement is a key factor for optimizing energy systems
 - > You are not managing what you do not measure
 - If you do not manage you cannot save!
 - > This is often achieved with standard instrumentation
- Complete a detailed energy assessment and identify near, mid and long-term opportunities
 - Develop an action plan

JNITED NATIONS

- Understand both the Utilities and Process side constraints
- System level integration between Utilities & Process leads to the state-of-the-art Best Practices operation

UNITED NATIONS

Acknowledgements

• Riyaz Papar,

Director, Energy Assets & Optimization, Hudson Technologies, USA

• Wayne Perry,

Technical Director, Kaeser Compressors USA

• Aimee Mc Kane

Senior Program Manager, Lawrence Berkeley National Laboratory, USA

• Robert O. Williams,

Senior Industrial Development Officer, UNIDO Energy Efficiency and Policy Unit

For more information

Liam Mc Laughlin mclaughlin.liam@gmail.com

Marco Matteini

M.Matteini@unido.org

System optimization approach: capturing and sustaining energy savings and cost reduction in industry